LECTURE Notes #25: The Halting Problem;
Turing-Acceptable vs. Turing-Decidable

THE HALTING PROBLEM (Chapter 5, Section 5.3, p. 251)

• What is the Halting Problem?

To determine for an arbitrary given Turing Machine M and input w,

whether M will eventually halt on input w

• Why do we care? (i.e what’s the motivation)

To find an example of a Turing-undecidable Language.

Because by Church’s Thesis, (algorithm \(\Leftrightarrow\) TM), such a language has a membership problem that cannot be solved (computed) by any kind of algorithm whatsoever.

• We already know that such languages exist:

By a counting argument:

• Every computable (recursive) language is decided by a TM

• There are only countably many TMs

• There are uncountably many languages

• Most languages are not Turing-decidable / computable / recursive
Two simple basic facts about Turing-decidable and Turing-acceptable Languages

1. If L is Turing-decidable then L is Turing-acceptable

Proof:
If M decides L, then the TM:
accepts/semidecides L

i.e if M decides L, we enter into either state y or n.

- If M halts in y, this machine halts
(because if w \(\in \) L, M goes to state y and halts)

- If M halts in n, this machine Runs Forever moving right
(goes into infinite loop if halts in n because w \(\notin \) L,
that is, the TM above doesn’t halt \(\iff \) doesn’t accept)

If L is Turing-decidable then L is Turing-acceptable

(i.e If L is decided by some TM, M, then L is also accepted by some TM,
namely the one above).

2. If L is Turing-decidable then so is \(\overline{L} \)

Proof:
This machine goes to a no (n) state when M ended up in a yes (y) state,
and vice-a-versa.

Therefore there is also a TM which decides \(\overline{L} \).
• Is every Turing-acceptable set Turing-decidable?

• This *would* be the case if there were an algorithm to solve the
 Halting problem
 Given any arbitrary TM, M, and any arbitrary input w, does M halt on input w?
 (i.e. if for any TM, M and input, w, we always knew that, or when M would halt,
 then we could modify M to make it decide \(L = \{ \text{any } w \} \))

• In particular, if \(L = L(M) \) were a turing-acceptable set, we could *decide* \(L \)
 by (a TM version of) the following algorithm:
 Given w, **solve the halting problem** for M and w,
 and go to state y or n accordingly (i.e. y if Turing-acceptable, else n).

• So the real question is:
 Is the Halting problem Solvable?

 In trying to answer this question fully, let’s consider the issues of
 Turing-acceptable and *Turing-decidable* in more detail.
Turing Acceptable :

1. M accepts \(w \in \Sigma^* \) if M *halts* on input \(w \)

2. Language L is Turing-acceptable if there is *some* TM, M that accepts it
 - That is, given a countably infinite number of TMs \(M_1, M_2, \ldots, M_i, \ldots \) and a language L,

 L is Turing-acceptable if at least one of the \(M_i \) accepts (halts on)

 any \(w \in L : L = \{ w \in \Sigma^* : M_i \text{ accepts } w \} \)

But the question is:

How do we know or discover which \(M_i \) (if any) accepts L ?

If we start testing \(M_1, M_2, \ldots \) if \(M_1 \) doesn’t accept L it will never halt. Yet, how do we know that if we run \(M_1 \) long enough it won’t eventually halt on \(w \) ? So the issue comes down to : we would like to be able to accurately *predict* whether a Machine will eventually halt on input \(w \). For if it were possible to predict for *any TM* and *any input string* whether or not that TM would eventually halt on that input then every Turing-acceptable language would also be Turing-decidable.

e.g. :

1. Given machine M, input w, design machine \(M^* \) such that
2. \(M^* \) performs calculations to *predict* the eventual outcome of M’s computations on input w (i.e solve the Halting Problem)
3. If M would halt on input w

 then go to the \(y \) state

 else go to the \(n \) state

So the question of whether every T.A language is T.D comes down to whether there is a TM that can predict the outcome of computations by arbitrary TMs, M, on arbitrary inputs, w.
Turing-acceptable Vs Turing-decidable:

- Consider the language $K_0 = \{ \rho(M) \rho(w) : \text{TM M accepts input w} \}$

 1. K_0 is Turing-acceptable (by definition):

 There is a machine, M_0 (a variant of U)
 which accepts input $= \rho(M) \rho(w)$ such that M accepts input w.

 2. So if M accepts $w \in L$ then M_0 also accepts $\rho(M) \rho(w) \in K_0$

 3. K_0 is like an infinite dictionary:

 $K_0 = \{ \rho(M_1) \rho(w_{11}), \rho(M_1) \rho(w_{12}),..., \rho(M_1) \rho(w_{1n}),... \rho(M_2) \rho(w_{21}), \rho(M_2) \rho(w_{22}),... \}$

 … a dictionary which contains the answer to the question:

 Does arbitrary TM M accept arbitrary input w?

 Because to answer the question we

 1. look in the dictionary to see if M is paired (appears) with input w
 2. If M does appear with w then M accepts w, else M doesn’t accept w

 4. So K_0 is a *formalized version* of the Halting Problem

 - because for any arbitrary M and w, we could just examine K_0 to see if $\rho(M) \rho(w) \in K_0$
 - but since K_0 is infinite, if we don’t find $\rho(M) \rho(w)$ we will never know if we have searched long enough (just as we would never know for M, w, if we had let M compute long enough that it might have eventually accepted w)

 5. However, if we could answer the question in general:

 is $\rho(M) \rho(w) \in K_0$

 then we could solve the Halting Problem \iff we could decide K_0

 6. But K_0 is not Turing-decidable \Rightarrow the Halting Problem is not solvable

 7. For *specific* M, w, we could predict whether M will halt on input w

 e.g.:

 1. Could see if M has any halt states
 2. For real simple M, w

 But there is no *completely general* method that correctly decides all cases.
Proof of The Halting Problem:

- Let the language $K_o = \{ \rho(M)\rho(w) : \text{TM } M \text{ accepts input } w \} \ (\rho \Rightarrow \text{encoding.})$

- K_o is the formalized version of the halting problem
 (i.e expresses any input w for any TM, M, both as inputs to U)

- Also, by the way K_o is defined, K_o is Turing-acceptable because the TM, M_o, accepts K_o. (i.e. M_o, like the universal machine, U, takes strings of the form $\rho(M)\rho(w)$, and simulates whatever M would do - which (in the case of K_o is halt/accept.)

- Hence,
 Every Turing-acceptable language is Turing-decidable iff the particular Turing-acceptable language, K_o is Turing-decidable.
 (i.e K_o is the hardest (most general) Turing-acceptable language - so if we show K_o is Turing-decidable, that can cover all cases in a general way)

- However, K_o is not Turing-decidable

Proof:

1. If the language K_o is Turing-decidable \Rightarrow the language K_1 is Turing-decidable where $K_1 = \{ \rho(M) : \text{TM, } M \text{ accepts input } \rho(M) \}$
 (i.e. $K_1 = \text{set of encoded representations, } \rho(M) \text{ of } M : M \text{ accepts } \rho(M)$)

- In other words, if the language K_o is Turing-decidable, K_1 is Turing-decidable also, because we could construct a TM to transform input $w = \rho(M) \in K_1$ to $\#w \rho(w)\# = \#\rho(M)\rho(\rho(M))\#$ and then pass control to M_o.

- So to answer the question “Is $\rho(M) \in K_1$?”, (i.e. to decide K_1), just ask the question “Is $\rho(M)\rho(\rho(M)) \in K_o$?” (i.e. decide K_0).
 (That is, decidable just means being able to answer the question,”Is $w \in L$?”)

∴ To show that K_o is not Turing-decidable, it is sufficient to show that K_1 is not Turing-decidable
2. If \(K_1 \) is Turing-decidable \(\implies \) \(K_1 (K_1 = K_1 \text{ complement}) \) is Turing-decidable
 (shown previously)

3. But \(K_1 \) is not even Turing-acceptable:

 Proof:

 \(K_1 = \{ w : w = \rho(M) \text{ for some TM, M that does not accept } \rho(M) \} \)

 that is, w was not the encoding \(\rho(M) \) of any TM, M

 Suppose, there were a TM, \(M^* \), which accepts

 \(K_1 = \{ \rho(M) : M \text{ does not accept } \rho(M) \} \)

 Then is \(\rho(M^*) \in K_1 \)?

 | If \(\rho(M^*) \in K_1 \) \(\iff \rho(M^*) \notin K_1 \iff M^* \text{ does not accept } \rho(M^*) \) —— (i) |
 | --- | --- |
 | But since \(M^* \) accepts \(K_1 \) (by def) |
 | \(and \) \(\rho(M^*) \) is a member of \(K_1 \) |
 | then \(M^* \) must accept \(\rho(M^*) \) because |
 | \(\rho(M^*) \) is a member of the set \(K_1 \) of \(\rho(M) \)s which \(M^* \) accepts |
 | So, \(\rho(M^*) \in K_1 \iff M^* \text{ accepts } \rho(M^*) \), |
 | which is in contradiction to (i) above. |
 | \(\therefore \) there exists no such \(M^* \). |

4. Finally, \(K_1 \) not T.A. \(\implies \) \(K_1 \) not T.D. \(\implies \) \(K_1 \) not T.D. \(\implies \) \(K_0 \) not T.D.
The previous proof actually makes use of the diagonalization principle:

\[K_1 = \{ \rho(M) : \text{TM, M accepts input } \rho(M) \} \]

Look at \(K_1 \) as a table where \(y \Rightarrow \text{set member}, \ n \Rightarrow \text{not a set member} \):

(For example, for \(i = j \), \(K_1 = \{ \rho(M_0), \rho(M_1), \rho(M_3) : M_i \text{ accepts } \rho(M_j) \} \))

<table>
<thead>
<tr>
<th></th>
<th>(\rho(M_0))</th>
<th>(\rho(M_1))</th>
<th>(\rho(M_2))</th>
<th>(\rho(M_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_0)</td>
<td>(y)</td>
<td>(n)</td>
<td>(n)</td>
<td>(y)</td>
</tr>
<tr>
<td>(M_1)</td>
<td>(y)</td>
<td>(y)</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>(M_2)</td>
<td>(n)</td>
<td>(n)</td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>(M_3)</td>
<td>(y)</td>
<td>(y)</td>
<td>(y)</td>
<td>(y)</td>
</tr>
</tbody>
</table>

- Table entry corresponding to \((M_i, \rho(M_j)) \) is \(y \) iff \(M_i \) accepts \(\rho(M_j) \)

- \(K_1 \) is represented by the complement of the diagonal which must be different from every row, and since \(K_1 \) is different from every row, there can’t be an \(M_i \) to accept it.

For example \(K_1 = \{ \rho(M_2) : M_2 \text{ does not accept } \rho(M_2) \} \), and none of the machines above accept only \(\{ \rho(M_2) : M_2 \text{ does not accept } \rho(M_2) \} \). That is, if \(M_2 \) accepts \(K_1 \) the way \(K_1 \) is defined.

\[\therefore K_1 \text{ is not Turing-acceptable since } K_1 = \text{exactly the set of } \rho(M) : \text{no TM accepts } \rho(M). \]

- Two theorems resulting from the previous proof:
 1. Not every Turing-acceptable language is Turing-decidable
 2. The complements of some Turing-acceptable languages are not Turing-acceptable